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Abstract
We obtain an interesting realization of the de Rham cohomological operators
of differential geometry in terms of the noncommutative q-superoscillators
for the supersymmetric quantum group GLqp(1|1). In particular, we show
that a unique quantum superalgebra, obeyed by the bilinears of fermionic
and bosonic noncommutative q-(super)oscillators of GLqp(1|1), is exactly
identical to that obeyed by the de Rham cohomological operators. A set of
discrete symmetry transformations for a set of GLqp(1|1) covariant quantum
superalgebras turns out to be the analogue of the Hodge duality ∗ operation of
differential geometry. A connection with an extended Becchi–Rouet–Stora–
Tyutin (BRST) algebra obeyed by the conserved and nilpotent (anti-)BRST and
(anti-)co-BRST charges, the conserved ghost charge and a conserved bosonic
charge (which is equal to the anticommutator of (anti-)BRST and (anti-)co-
BRST charges) is also established.

PACS numbers: 11.10.Nx, 03.65.−w, 04.60.−d, 02.20.−a

1. Introduction

The subject of noncommutative geometry and corresponding noncommutative field theories
has attracted a great deal of interest during the past few years. Such an upsurge of interest
has been thriving because of its very clean and cogent appearance in the context of brane
configurations related to the dynamics of string theories. In fact, the end points of the
open strings, trapped on the D-branes, turn out to be noncommutative1 in the presence of an
antisymmetric (Bµν = −Bνµ) potential that constitutes the 2-form (i.e. B = 1

2 (dxµ∧ dxν)Bµν)

1 It will be noted that, in the context of string theories and D-branes, it is Snyder’s idea of noncommutativity [1] that
has become pertinent and popular.
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background field for the whole system under consideration [2]. The noncommutative
supersymmetric gauge theories [3, 4] are found to be the low energy effective field theories
for the D-branes discussed above. The experimental tests (e.g., noncommutative Aharanov–
Bohm effect, noncommutative synchrotron radiation, etc) for such kind of noncommutativity
in the spacetime structure have been proposed [5, 6] where it has been argued that only the
quantum mechanical effects are good enough to shed some light on its very existence. This
is why, in the recent past, a whole range of quantum mechanical studies has been performed
for the noncommutative (non-)relativistic systems and the ensuing results have gone into a
systematic understanding of this subject from various physical and mathematical points of
view (see, e.g., [7–10] and references therein).

The ideas behind the noncommutative (NC) spacetime and spacetime quantization are
quite old ones (see, e.g., [1, 11, 12] for details). A few decades ago, it was conjectured that
the deformation of groups (i.e., the subject of quantum groups) [13–17], based on the quasi-
triangular Hopf algebras [18], together with the idea of noncommutative geometry might shed
some light on the existence of a ‘fundamental length’ in the context of spacetime quantization.
It was also hoped that this fundamental length will be responsible for getting rid of the infinities
that plague the local quantum field theories (see, e.g., [12] for more details). In our present
investigation, we address some of the interesting issues associated with the noncommutativity
present in the subject of quantum groups (without going into any kind of discussion on
Snyder’s idea of noncommutativity). It is worthwhile, in the context of quantum groups,
to recall that some interesting attempts have been made to construct the dynamics on an NC
quantum phase space by exploiting the differential geometry and differential calculi developed
on the NC quantum hyperplanes residing in the NC quantum cotangent manifolds (see, e.g.,
[19–22] and references therein). In particular, in [22], a consistent dynamics is constructed
for the (non-)relativistic physical systems where a specific quantum group invariance and the
ordinary (rotational) Lorentz invariance are respected together for any arbitrary ordering of
the (space and) Lorentz spacetime indices. In a recent paper [23], the noncommutativity due
to the quantum groups and the noncommutativity due to the presence of a magnetic field
in the two-dimensional (2D) Landau problem are brought together in the construction of a
consistent Hamiltonian and Lagrangian formulation where the symplectic structures, defined
on the four-dimensional (4D) cotangent manifold, play a very important role. In this paper, it
has been attempted to establish a connection between both kinds of noncommutativities (see,
e.g., [23] for details). The q-deformed groups have also been treated as the gauge groups to
develop the q-deformed Yang–Mills theories which reduce to the ordinary Yang–Mills gauge
theories in the limit q → 1 (see, e.g., [24, 25] and references therein for details). In these
endeavours, the idea of quantum trace, quantum gauge orbits, quantum gauge transformations,
etc have played notable roles [25, 26].

The purpose of our present paper is to establish, in a single theoretical setting, the inter-
connections among (i) the de Rham cohomological operators of differential geometry, (ii) the
N = 2 quantum mechanical superalgebra and (iii) the extended BRST algebra for some
duality invariant gauge theories in the language of noncommutative q-superoscillators for
the supersymmetric quantum group GLqp(1|1). We show that the bilinears of the
noncommutative q-superoscillators of the supersymmetric quantum group GLqp(1|1) obey
an algebra that is reminiscent of the algebra obeyed by the de Rham cohomological operators
of differential geometry. It is also demonstrated that the GLqp(1|1) covariant quantum
superalgebras, obtained in our earlier work [26], are unique and they reduce to a unique
superalgebra for the condition pq = 1. The latter remains covariant, as is quite obvious,
under the co-action of the supersymmetric quantum group GLq,q−1(1|1) and the bilinears
of the q-superoscillators of this quantum group obey an algebra that is reminiscent of the
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N = 2 supersymmetric quantum mechanics (SQM). At the SQM level too, an analogy with
the de Rham cohomological operators is made, concentrating on the algebraic structure. The
discrete symmetry transformations for all three covariant quantum superalgebras turn out to
be the analogue of the Hodge duality ∗ operation of the differential geometry. This claim has
been shown at the level of the conserved and nilpotent charges corresponding to the N = 2
supersymmetric quantum mechanical algebra (cf (6.10) and (6.11) below) as well as at the
level of the conserved and nilpotent (co-)BRST charges (and corresponding nilpotent symmetry
transformations) for the duality invariant gauge theories (cf (6.4), (6.6) and (6.7) below) and
the corresponding extended BRST algebra2. The identifications of the supercharges as well as
the (co-)BRST charges with the de Rham cohomological operators are in terms of the bilinears
of the noncommutative q-superoscillators of GLqp(1|1).

Besides the motivations pointed out above, our present study is essential primarily on
three counts. First, as is evident, the differential geometry and differential calculi play key
roles in the discussion of a consistent dynamics in the framework of the Hamiltonian and/or
Lagrangian formulation. Thus, it is an interesting endeavour to get some new noncommutative
realization of the operators of the differential geometry which might play important roles in
the description of the consistent noncommutative dynamics (see, e.g., section 7 for more
discussions). Second, to the best of our knowledge, the noncommutative realization of the
cohomological operators, Hodge duality ∗ operation, Hodge decomposition theorem, etc, has
not been achieved so far in the language of the quantum groups. It is, therefore, a challenging
problem to obtain such a realization. Finally, our present investigation might turn out to
be useful in the description of the q-deformed gauge theories where the language of groups,
differential geometry and differential forms is exploited extensively. Furthermore, such studies
might complement (or provide an alternative to) the progress made in the realm of NC gauge
theories based on Snyder’s idea of noncommutativity.

The contents of our present investigation are organized as follows. In section 2, we present
a convenient synopsis of some key concepts connected with the de Rham cohomological
operators. For our present paper to be self-contained, in section 3, we recapitulate some
preliminary results of our earlier work [26] in a somewhat different manner. We derive a
couple of covariant superalgebras for GLqp(1|1) in section 4. Sections 5 and 6 are central
to our present paper. We deal with the discrete symmetries for the covariant superalgebras
in section 5. These are shown to correspond to the Hodge duality ∗ operation of differential
geometry in section 6. Furthermore, in section 6, we also show the connection of some specific
bilinears of the q-superoscillators of GLqp(1|1) and their N = 2 SQM algebra with the BRST
operators and their extended algebra. We make some concluding remarks in section 7 and
point out a few future directions that could be pursued later.

2. Preliminary: de Rham cohomological operators

On a compact D-dimensional manifold without a boundary, there exist three (i.e. d, δ,�)

cohomological operators in the realm of differential geometry which are found to be
responsible for the study of the key and crucial properties associated with the differential
forms defined on the manifold. The (co-)exterior derivatives (δ) d are nilpotent of order
2 (i.e. d2 = δ2 = 0) which could be readily proved by exploiting the basic definitions
(d = dxµ∂µ, δ = ± ∗ d ∗, dxµ ∧ dxν = −dxν ∧ dxµ, etc) of these operators in the
inner product of the differential forms defined on the D-dimensional compact manifold

2 A concise discussion about the (co-)BRST symmetries, corresponding nilpotent (co-)BRST charges and their
extended BRST algebra, etc, for the duality invariant gauge theories, has been given in section 6. Appropriate
references on this topic are cited at the beginning of this section.
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(i.e. µ = 0, 1, 2, . . . ,D − 1). Here ∗ is the Hodge duality operation defined on the manifold.
The Laplacian operator � = (d + δ)2 = dδ + δ d is defined in terms of the nilpotent
(co-)exterior derivatives and is a self-adjoint and a positive semi-definite quantity for a given
compact manifold. The algebra obeyed by the above operators can be succinctly expressed as

d2 = 0 δ2 = 0 � = (d + δ)2 = {d, δ}
[�, d] = 0 [�, δ] = 0 {d, δ} �= 0.

(2.1)

The above algebra shows that the Laplacian operator � is the Casimir operator for the whole
algebra because it commutes with all the cohomological operators [27–29].

The de Rham cohomology groups characterize the topology of a given manifold in terms
of the key properties associated with the differential forms. These properties are, in a subtle
way, captured by the cohomological operators d, δ,�. In this context, it is pertinent to point
out that some of the properties that owe their origin to the cohomological operators are as
follows: (i) a differential form fn of degree n is said to be closed (dfn = 0) and co-closed
(δfn = 0) if it is annihilated by d and δ, respectively; (ii) the same form is said to be exact
(fn = den−1) and co-exact (fn = δcn+1) if and only if the above closed (dfn = 0) and
co-closed (δfn = 0) conditions are satisfied trivially due to the nilpotency (d2 = δ2 = 0)

of the (co-)exterior derivatives (δ) d; (iii) an n-form (hn) is said to be a harmonic form if
the Laplace equation �hn = 0 is satisfied which finally implies that the harmonic form hn

is closed (dhn = 0) and co-closed (δhn = 0), simultaneously; (iv) the celebrated Hodge
decomposition theorem, on a compact manifold without a boundary, can be defined in terms
of the de Rham cohomological operators (d, δ,�) as (see, e.g., [27–29] for details)

fn = hn + den−1 + δcn+1 (2.2)

which states that any arbitrary n-form fn (with 0 � n � D; n = 0, 1, 2 . . .) on a D-dimensional
compact manifold can be uniquely written as the sum of a harmonic form hn, an exact form
den−1 and a co-exact form δcn+1. A close look at (2.2) demonstrates that the degree of a form
fn is raised by 1 if the exterior derivative d acts on it (i.e. dfn ∼ gn+1). In contrast, the degree
of a form fn is lowered by 1 if it is acted upon by the co-exterior derivative δ (i.e. δfn ∼ gn−1).
The degree of a form fn remains intact if it is acted upon by the Laplacian operator �

(i.e. �fn ∼ gn).
Two closed (df ′ = df = 0) forms f and f ′ are said to belong to the same cohomology

class with respect to the exterior derivative d if they differ by an exact form (i.e. f ′ = f + dg,
for an appropriate non-zero form g). Similarly, a co-cohomology can be defined w.r.t. δ where
any arbitrary two co-closed (δc′ = δc = 0) forms c′ and c differ by a co-exact form (i.e.
c′ = c + δm, for an appropriate non-zero form m). To wrap up this section, we comment
briefly on the ± signs present in the relationship (δ = ± ∗ d ∗) between the (co-)exterior
derivatives (δ) d. By taking the inner product of the forms on the D-dimensional manifold, it
can be shown that, for an even D, we obtain the relationship between δ and d with a minus
sign (i.e. δ = −∗d ∗). This conclusion is dictated by the fact that, in general, an inner product
between n-forms on the D-dimensional manifold leads to the relationship between δ and d as
(see, e.g., [27] for details)

δ = (−1)(Dn+D+1) ∗ d ∗ . (2.3)

Thus, for an even-dimensional manifold, there is always a minus sign on the rhs and for the
odd-dimensional manifold, the above relation becomes δ = (−1)n ∗ d ∗ which shows that
the ± signs on the rhs for the latter case depend on the degree of the forms that are involved
in the specific inner product defined on the odd-dimensional manifold.
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3. Quantum group GLqp(1|1) and q-superoscillators

In this section, we very briefly recapitulate, in a somewhat different manner, the bare essentials
of our earlier work [26] which will be relevant for our further discussions. It can be seen that
the following transformations,

(
x

y

)
→

(
x ′

y ′

)
=

(
a β

γ d

) (
x

y

)
≡ (T )

(
x

y

)
(3.1)

(x̃ ỹ) → (x̃ ′ ỹ ′) = (x̃ ỹ)

(
a β

γ d

)
≡ (x̃ ỹ)(T ) (3.2)

for the even pair of variables (x, x̃) and odd (y2 = ỹ2 = 0) pair of variables (y, ỹ), that define
the super quantum hyperplane, with conditions

xy = qyx → x ′y ′ = qy ′x ′ y2 = 0 → (y ′)2 = 0

x̃ỹ = pỹx̃ → x̃ ′ỹ ′ = pỹ ′x̃ ′ ỹ2 = 0 → (ỹ ′)2 = 0
(3.3)

lead to the braiding relationships among the rows and columns, constituted by the even
elements (a, d) and odd (β2 = γ 2 = 0) elements (β, γ ) of the 2×2 supersymmetric quantum
matrix T defined in (3.1) and (3.2), as

aβ = pβa aγ = qγ a βγ = −(q/p)γβ dγ = qγ d

dβ = pβd β2 = γ 2 = 0 ad − da = −(p − q−1)βγ = (q − p−1)γβ.
(3.4)

In fact, this method is a simplified version of Manin’s super quantum hyperplane approach
to the construction of the general quantum supergroups [17]. For q = p, the above relations
boil down to the braiding relations in the rows and columns for the supersymmetric quantum
group GLq(1|1) with a single deformation parameter q. For the special case of pq = 1, which
corresponds to the supersymmetric quantum group GLq,q−1(1|1), we obtain the following
relations among the elements of GLq,q−1(1|1) (that emerge from (3.4)):

aβ = q−1βa aγ = qγ a βγ = −(q2)γβ dγ = qγ d

dβ = q−1βd β2 = 0 γ 2 = 0 ad = da.
(3.5)

The above relations (3.4) and (3.5) will turn out to be quite useful for our later discussions.
To study the GLqp(1|1) covariant relations among the q-superoscillators, we introduce a
pair of noncommutative bosonic oscillators (A, Ã) and a pair of noncommutative fermionic
(i.e. B2 = B̃2 = 0) oscillators (B, B̃). It is straightforward to check that the following
GLqp(1|1) transformations of the super column matrix (A,B)T and the super row matrix
(Ã, B̃) constructed by the superoscillators

(
A

B

)
→

(
A′

B ′

)
=

(
a β

γ d

) (
A

B

)
≡ (T )

(
A

B

)
(3.6)

(Ã B̃) → (Ã′ B̃ ′) = (Ã B̃)

(
a−1(1 + βd−1γ a−1) −a−1βd−1

−d−1γ a−1 d−1(1 − βa−1γ d−1)

)

≡ (Ã B̃)(T )−1 (3.7)

leave the following algebraic relationships invariant,

AB = qBA B̃Ã = pÃB̃ B2 = B̃2 = 0 (3.8)
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if we exploit the q-commutation relations of (3.4). Consistent with (3.8), the other general
covariant relations among the superoscillators are

AB̃ = (λ − ν)

q
B̃A BÃ = (λ − ν)

p
ÃB

AÃ − (λ − ν)

pq
ÃA = BB̃ +

(λ − ν)

pq
B̃B

(3.9)

if we assume the validity of the following general relation between the bilinears constructed
from the bosonic oscillators A, Ã as well as the fermionic oscillators B, B̃,3

AÃ − λÃA = 1 + νB̃B (3.10)

where λ and ν are some arbitrary non-zero commuting parameters which can be determined
by exploiting the associativity of the trilinear combinations of the (super)oscillators. This
associativity requirement is, in fact, equivalent to invoking the sanctity of the graded Yang–
Baxter equations vis-à-vis the covariant algebraic relations (cf (3.8)–(3.10)). It will be
noted that all the relations in (3.9) actually emerge from (3.10) when we exploit the basic
transformations (3.6) and (3.7) on the (super)oscillators and use the relations in (3.4) and
(3.8). As a side remark, we wish to state that the last algebraic superoscillator relation of
(3.9) and our assumption (3.10) imply the following relationship between the bilinears of the
(super)oscillators,

BB̃ = 1 +

(
λ − λ − ν

pq

)
ÃA +

(
ν − λ − ν

pq

)
B̃B (3.11)

where the rhs contains terms with all the tilde oscillators arranged towards the left and all
the non-tilde oscillators arranged towards the right. This relationship will turn out to be
quite helpful in the next section where we shall invoke the associativity condition. Taking
into account the explicit transformations in (3.6), (3.7) and relations in (3.4), (3.8), it can be
checked that all the (super)oscillator relations from (3.8) to (3.11) are covariant under the
co-action of supersymmetric quantum group GLqp(1|1).

4. Covariant quantum superalgebras for GLqp(1|1)

In this section, we establish the fact that a set of a couple of covariant superalgebras, obtained
in our earlier work [26], is a unique set of algebras for the quantum group GLqp(1|1). To this
end, we compute the exact values of the parameters λ and ν in the above from the requirement
that in the set of, for instance, a trilinear (super)oscillator BB̃Ã, we can bring all the tilde
operators to the left in two different ways as listed below:

(BB̃)Ã =
[

1 + λ − λ − ν

pq

]
Ã + λ

[
λ − λ − ν

pq

]
ÃÃA

+

[
ν

(
λ − λ − ν

pq

)
+ (λ − ν)

(
ν − λ − ν

pq

)]
ÃB̃B (4.1)

B(B̃Ã) = [(λ − ν)]Ã + (λ − ν)

[
λ − λ − ν

pq

]
ÃÃA +

[
(λ − ν)

(
ν − λ − ν

pq

)]
ÃB̃B. (4.2)

At this crucial juncture, a couple of remarks are in order. First, it will be noted that in (4.1) as
well as (4.2), we have chosen a different set of (super)oscillators than that chosen in our earlier

3 It should be emphasized that, in our earlier work [26], we have postulated the validity of a different kind of
relationship (i.e. BB̃ + νB̃B = 1 + λÃA) among the bilinears of the bosonic and fermionic (super)oscillators.
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work4 [26]. Second, the expressions for the (super)oscillators on the rhs of equations (4.1) and
(4.2) are unique as far as all the covariant algebraic relations among the (super)oscillators from
(3.8) to (3.11) are concerned. For the validity of the associativity condition, it is essential that
the rhs of both the above equations should match with each other. Such an equality imposes
the following two conditions on λ and ν:

(i) ν = 0 λ = pq (ii) ν = (1 − pq)

pq
λ = 1

pq
. (4.3)

It should be re-emphasized that the above associativity requirement is equivalent to the
validity of the graded Yang–Baxter equation in the context of supersymmetric quantum group
GLqp(1|1). The covariant superalgebra for the bilinears corresponding to case (i) is

BÃ = qÃB AB̃ = pB̃A AÃ − pqÃA = 1

BB̃ + B̃B = 1 + (pq − 1)ÃA
(4.4)

which are in addition to the invariant relations (3.8) for the bilinears. For case (ii), in addition
to (3.8), the other bilinear q-superoscillator relations are

BÃ = p−1ÃB AB̃ = q−1B̃A BB̃ + B̃B = 1

AÃ − 1

pq
ÃA = 1 +

(1 − pq)

pq
B̃B.

(4.5)

It should be emphasized, at this stage, that relations (3.8), (4.4) and (4.5) are same as those
obtained in our earlier work [26] where a different set of superoscillators (in the trilinear
form) was taken into consideration. For the case when pq = 1, we obtain a unique solution
(ν = 0, λ = 1) where the algebraic relations (3.8), (4.4) and (4.5) reduce to

BÃ = qÃB AB̃ = q−1B̃A AÃ − ÃA = 1 B2 = 0

BB̃ + B̃B = 1 AB = qBA B̃Ã = q−1ÃB̃ B̃2 = 0.
(4.6)

From the q-superoscillators (A, Ã, B, B̃), one can construct a four-dimensional ‘adjoint
representation’ for the supersymmetric quantum group GLqp(1|1) in terms of the following
four bilinears [26],

Y = AÃ + µBB̃

1 + µ
H = AÃ − BB̃ Q = AB̃ Q̄ = BÃ (4.7)

where µ �= −1 and the specific operator H = AÃ − BB̃ is invariant under the co-action
of the supersymmetric quantum group GLqp(1|1). It is worthwhile emphasizing that the
above operator H has been derived in [26] by exploiting the idea of supertrace for a 2 × 2
super quantum matrix constructed from the q-superoscillators A, Ã, B, B̃. The operators
in (4.7) obey the following superalgebra which turns out to be reminiscent of the N = 2
supersymmetric quantum algebra:

[H,Q] = [H, Q̄] = [H,Y ] = 0 Q2 = Q̄2 = 0

{Q, Q̄} = H [Q,Y ] = +Q [Q̄, Y ] = −Q̄.
(4.8)

The above supersymmetric algebra is true for the case when ν = (pq)−1(1−pq), λ = (pq)−1

(i.e. case (ii) in equation (4.3)) as well as for the case when pq = 1. In the latter case, both

4 For the proof of associativity, a trilinear set AÃB̃ has been chosen in [26] for the purpose of re-ordering it in two
different ways. More such kinds of trilinear combinations of (super)oscillators can be considered for the determination
of ν and λ (see, e.g., the appendix for details). However, the covariant quantum superalgebras (i.e. (3.8), (4.4), (4.5))
remain the same. This demonstrates clearly the uniqueness of these basic superalgebras that are present in (3.8),
(4.4), (4.5) as well as in their special case (4.6).
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the conditions of (4.3) reduce to a single condition (i.e. ν = 0, λ = 1). Such a kind of algebra
for the case when ν = 0, λ = pq (i.e. case (i) of (4.3)) is as follows:

[H,Q] = 0 [H, Q̄] = 0 [H,Y ] = 0 Q2 = 1
2 {Q,Q} = 0

{Q, Q̄} = [1 + (pq − 1)H ]H Q̄2 = 1
2 {Q̄, Q̄} = 0

[Q,Y ] = +[1 + (pq − 1)H ]Q [Q̄, Y ] = −[1 + (pq − 1)H ]Q̄.

(4.9)

Even though (4.9) looks a bit different from (4.8), it can be seen that the following redefinitions
of Y,Q, Q̄ in terms of Ŷ , P , P̄

Ŷ = Y

1 + (pq − 1)H
P = Q

[1 + (pq − 1)H ](1/2)
P̄ = Q̄

[1 + (pq − 1)H ](1/2)

(4.10)

lead to the N = 2 supersymmetric quantum mechanical superalgebra

[H,P ] = [H, P̄ ] = [H, Ŷ ] = 0 P 2 = P̄ 2 = 0

{P, P̄ } = H [P, Ŷ ] = +P [P̄ , Ŷ ] = −P̄ .
(4.11)

The identification in (4.10) is valid for derivation of (4.11) because H is the Casimir operator
for (4.9) and it does commute with the original operators Q, Q̄ and Y. It is crystal clear that
the four operators in (4.7) do give a realization of N = 2 supersymmetric quantum mechanics
in terms of the noncommutative q-superoscillators. Here the Hamiltonian H is invariant under
GLqp(1|1) transformations (3.6) and (3.7), Q and Q̄ are like nilpotent supercharges and Y
is like a Witten index which encodes the fermion number for the supersymmetric quantum
mechanical theory.

At this stage, we summarize the main results of our present section. First,
the superoscillator algebraic relations (3.8) remain invariant under the co-action of the
supersymmetric quantum group GLqp(1|1). Second, the requirement of associativity
condition leads to only two GLqp(1|1) covariant algebraic relations (cf (4.4) and (4.5) in
addition to (3.8)) for the specific values of λ and ν as given in (4.3). Third, the above two
covariant relations reduce to a unique algebraic relation (4.6) which is found to be GLq,q−1 (1|1)

covariant under the co-action of GLqp(1|1) for the deformation parameters satisfying pq = 1.
Fourth, this unique superalgebra provides a unique realization of the de Rham cohomology
operators of differential geometry as there is one-to-one correspondence between bilinears of
the q-superoscillators and the cohomological operators (i.e. Q → d, Q̄ → δ,H → �) as
can be seen in (4.8). The operator Y is the analogue of the Witten index which determines
the degree of the forms in the language of fermion numbers5 of the supersymmetric theory
(see, e.g., [31] for details). Fifth, the analogue of the Hodge duality ∗ operation of differential
geometry turns out to be a host of discrete symmetry transformations for the superalgebras
(3.8), (4.4), (4.5) and (4.6) which are discussed in section 6 (see below).

5. Discrete symmetries for the covariant superalgebras

It is interesting to note that the superalgebra (4.6) for pq = 1 (i.e. ν = 0, λ = 1) remains form
invariant under the following discrete symmetry transformations:

A → ±iÃ Ã → ±iA B → ±B̃ B̃ → ±B. (5.1)

5 For the supersymmetric quantum mechanical theory, it can be checked that one can choose Q = σ+ =
1
2 (σ1 + iσ2), Q̄ = σ− = 1

2 (σ1 − iσ2), Y = 1
2 (1 − σ3) in terms of the 2 × 2 Pauli matrices which do satisfy

[Q, Y ] = +Q, [Q̄, Y ] = −Q̄, Q2 = Q̄2 = 0 (see, e.g., [30] for further references and more details).
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Note that there is no transformation on the deformation parameters p and q but there are
transformations on the superoscillators A, Ã, B, B̃. Similar kinds of a couple of discrete
symmetry transformations for ν = 0, λ = pq in the case of covariant superalgebra (4.4)
(together with relations (3.8)) are

A → ±iqÃ Ã → ±ipA B → ±qB̃ B̃ → ±pB q → p−1 p → q−1 (5.2a)

A → ±ipÃ Ã → ±iqA B → ±pB̃ B̃ → ±qB q → p−1 p → q−1. (5.2b)

The covariant superalgebra (4.5) (together with (3.8)) corresponding to ν = (pq)−1(1 − pq),

λ = (pq)−1 is found to be endowed with the following discrete symmetry transformations on
the superoscillators (A, Ã, B, B̃) and the deformation parameters p and q:

A → ±iÃ Ã → ±iA B → ±B̃ B̃ → ±B q → p−1 p → q−1. (5.3)

It can be checked that, under the transformations (5.1) and (5.3), the four bilinear operators of
(4.7) individually undergo the following change:

H = AÃ − BB̃ → H̃ = −ÃA − B̃B

Q = AB̃ → Q̃ = ±iÃB Q̄ = BÃ → ˜̄Q = ±iB̃A

Y = AÃ + µBB̃

1 + µ
→ Ỹ = −ÃA + µB̃B

1 + µ
.

(5.4)

It is elementary to check that the N = 2 supersymmetric quantum algebra (4.8), for the bilinears
in (4.7), remains form invariant under (5.4). This can be succinctly stated in mathematical
form as follows:

[H̃ , Q̃] = [H̃ , ˜̄Q] = [H̃ , Ỹ ] = 0 Q̃2 = ( ˜̄Q)2 = 0

{Q̃, ˜̄Q} = H̃ [Q̃, Ỹ ] = +Q̃ [ ˜̄Q, Ỹ ] = − ˜̄Q.
(5.5)

Now let us concentrate on the discrete transformations in (5.2). It is straightforward to see
that the four bilinears of (4.7) transform in the following manner under (5.2):

H = AÃ − BB̃ → H̃ = −(pq)(ÃA + B̃B)

Q = AB̃ → Q̃ = ±i(pq)(ÃB) Q̄ = BÃ → ˜̄Q = ±i(pq)(B̃A)

Y = AÃ + µBB̃

1 + µ
→ Ỹ = −(pq)

[
ÃA − µB̃B

1 + µ

]
.

(5.6)

These transformed operators obey the following algebra:

[H̃ , Q̃] = 0 [H̃ , ˜̄Q] = 0 [H̃ , Ỹ ] = 0 (Q̃)2 = 1

2
{Q̃, Q̃} = 0

{Q̃, ˜̄Q} =
[

1 +

(
1

pq
− 1

)
H̃

]
H̃ ( ˜̄Q)2 = 1

2
{ ˜̄Q, ˜̄Q} = 0

[Q̃, Ỹ ] = +

[
1 +

(
1

pq
− 1

)
H̃

]
Q̃ [ ˜̄Q, Ỹ ] = −

[
1 +

(
1

pq
− 1

)
H̃

]
˜̄Q.

(5.7)

As far as the superalgebras in (4.8), (4.9), (5.5) and (5.7) are concerned, there are a few
comments in order. First, it can be noted that the deformation parameters do not appear in
the algebra (4.8) for the cases (i) ν = 0, λ = 1 (i.e. the case when pq = 1) and (ii) ν =
(pq)−1(1−pq), λ = (pq)−1. As a result, the corresponding algebra (5.5) for the transformed
bilinears remains form invariant. Second, in the case of ν = 0, λ = pq, the superalgebra (4.9)
contains deformation parameters for the bilinears of (4.7). This is why the corresponding
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superalgebra (5.7) for the tilde operators contains a (pq)−1 in place of pq occurring in
(4.9). The latter is due to the fact that, in the discrete transformations (5.2), we have
p → q−1, q → p−1. Third, it is very interesting to point out that, for the restriction
pq = 1, the discrete symmetry transformations in (5.3) do converge trivially to (5.1). Fourth,
let us concentrate on (5.2a) which leads to A → iqÃ, Ã → iq−1A,B → qB̃, B̃ → q−1B if
we choose the upper signs. It can be readily checked that the algebraic relations (4.6) remain
invariant under the above discrete transformations too. The same can be checked to be true
for the other transformations in (5.2a) and (5.2b) as well. The key point to be noted is that
these transformations (cf (5.2a) and (5.2b)) owe their origin to (5.1) (i.e. for pq = 1) when
one plays with some constant factors (e.g., q and q−1) that are plugged in the transformations
(5.1). Fifth, the discrete symmetry transformations in (5.1)–(5.3) would turn out to be the
analogue of Hodge duality ∗ operation of differential geometry as we shall see in the next
section. In fact, we shall establish this analogy at the level of a duality between supercharges
Q and Q̄ themselves as well as at the level of symmetry transformations generated by Q and
Q̄ which are cast in the language of BRST and co-BRST symmetries, respectively.

6. Connection with the extended BRST algebra

In a recent set of papers (see, e.g., [32–39]), a connection between the de Rham cohomology
operators (d, δ,�) and (anti-)BRST charges Q(a)b, (anti-)co-BRST charges Q(a)d , a ghost
charge Qg and a bosonic charge W = {Qb,Qd} = {Qab,Qad} has been established for
(i) the free Abelian 1-form gauge theory [31–33], (ii) the self-interacting 1-form non-Abelian
gauge theory (where there is no interaction between the matter fields and gauge field)
[34, 35], (iii) the interacting 1-form U(1) gauge theory where there is an interaction between
the 1-form Abelian gauge field and the matter (Dirac) fields [36, 37], and (iv) the free Abelian
2-form gauge theory [38, 39], etc, in the language of symmetry properties for the Lagrangian
density of these theories. In all the above examples of the field theoretic models, the algebra
satisfied by the local and conserved charges is found to be

[W,Qr ] = 0 r = g, b, ab, d, ad Q2
b = Q2

d = Q2
ab = Q2

ad = 0

W = {Qb,Qd} = {Qab,Qad} {Qb,Qad} = {Qd,Qab} = 0 {Qb,Qab} = 0

i[Qg,Qb(ad)] = +Qb(ad) i[Qg,Qd(ab)] = −Qd(ab) {Qd,Qad} = 0.

(6.1)

The above algebra is exactly like the algebra obeyed by the de Rham cohomological operators
with a two-to-one mapping between the conserved charges and cohomological operators:
Qb(ad) → d,Qd(ab) → δ,W = {Qb,Qd} = {Qab,Qad} → �. For all the above models, a
set of discrete symmetry transformations has been shown to correspond to the Hodge duality
∗ operation of differential geometry. Furthermore, the analogue of the Hodge decomposition
theorem (2.2) has been derived in the quantum Hilbert space of states where the ghost number
plays the role of the degree of the differential forms. Thus, the above examples provide an
interesting set of field theoretical models for the Hodge theory where all the cohomological
operators, Hodge duality ∗ operation, Hodge decomposition theorem, etc, are expressed in
terms of the local, covariant and continuous (as well as discrete) symmetry transformations
and their corresponding generators (i.e. conserved charges).

Now we shall concentrate on the unique algebra (4.8) which is separately valid for (i)
ν = (pq)−1(1 − pq), λ = (pq)−1 and (ii) ν = 0, λ = 1 (i.e. the case when pq = 1). In
fact, as emphasized earlier, both the covariant quantum superalgebras (4.8) and (4.9) converge
to (4.8) for the case pq = 1. In contrast to the ‘two-to-one’ mapping between local and
conserved charges and the cohomological operators for the algebra (6.1), we shall see that the
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algebra (4.8) provides a ‘one-to-one’ mapping between the bilinears of (4.7) and the conserved
charges of the BRST formalism. Such a suitable identification, for our purpose, is

Qb = AB̃ ≡ Q Qd = BÃ ≡ Q̄ Q2
b = Q2

d = 0

W = (AÃ − BB̃) ≡ H −iQg = AÃ + µBB̃

1 + µ
≡ Y

(6.2)

and, in addition, the discrete symmetry transformations (5.1)–(5.3) provide the realization of
the Hodge duality ∗ operation of differential geometry. We distinguish our realization of duality
(from the usual differential geometry Hodge ∗ duality) by denoting it by a separate and different
	 operation. To corroborate the above identifications beyond merely an algebraic equivalence,
we note that the conserved charges (i.e. Q̇b = [Qb,H ] = 0, Q̇d = [Qd,H ] = 0) generate the
symmetry transformations sb and sd for the Hamiltonian H. These transformations are encoded
in the nilpotent

(
s2
b = s2

d = 0
)

operators sb and sd . The explicit form of the transformations
generated by the conserved charges Qb = AB̃ and Qd = BÃ for the noncommutative
superoscillators A, Ã, B, B̃, for the given superalgebra (4.6) (i.e. ν = 0, λ = 1 ), are

sbÃ = [Ã,Qb] = −q−1B̃ + (1 − q−1)ÃAB̃

sdÃ = [Ã,Qd ] = (1 − q)ÃBÃ sbA = [A,Qb] = (q−1 − 1)AB̃A

sdA = [A,Qd ] = qB + (q − 1)BÃA

sbB̃ = {B̃,Qb} = 0 sdB̃ = {B̃,Qd} = qÃ + (1 − q)B̃BÃ

sdB = {B,Qd} = 0 sbB = {B,Qb} = A + (q−1 − 1)BB̃A.

(6.3)

It is very interesting to point out that the above transformations are connected to each other
by a general formula for the generic noncommutative q-(super)oscillator 
 as

s̃d
 = ± 	 s̃b 	 
 (6.4)

where the + sign on the rhs is for 
 = B, B̃ and the − sign on the rhs is for 
 = A, Ã

for all cases of superalgebras (3.8), (4.4)–(4.6). The above signs are dictated by the general
requirement of a duality invariant theory (see, e.g., [40] for details). We would like to lay
stress on the fact that the relationship in (6.4) is the analogue of such a type of relation that
exists in the differential geometry as given by equation (2.3). It will be noted that, under
all the above discrete transformations (i.e. (5.1)–(5.3)) corresponding to the 	 operation, the
result of two successive 	 operations on the noncommutative q-superoscillators (A, Ã, B, B̃)

of GLqp(1|1) is

	 (	 A) = −A 	 (	 Ã) = −Ã 	 (	 B) = +B 	 (	 B̃) = +B̃ (6.5)

which decides the signatures present in (6.4). This observation should be contrasted with the
(±) signs present in the relation δ = ± ∗ d ∗ between (co-)exterior derivatives (δ) d of the
differential geometry where these signs are dictated by the dimensionality of the manifold
on which these operators are defined. The expressions for s̃b and s̃d present in (6.4) are
different for various kinds of superalgebras. In fact, relation (6.4) is valid for all the covariant
superalgebras. For instance, in the case of ν = 0, λ = 1 which corresponds to pq = 1, we
have

s̃d = (−iq)(−1/2)sd s̃b = (−iq)(+1/2)sb. (6.6)

It will be noted that the deformation parameters do not transform (cf (5.1)) in the above
	 operation corresponding to the covariant quantum superalgebra (4.8). For the cases
ν = 0, λ = pq and ν = (pq)−1(1 − pq), λ = (pq)−1, we have

s̃d = (+ip)(+1/2)sd s̃b = (−iq)(+1/2)sb. (6.7)
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Note that, in the above transformations (cf (5.2) and (5.3)) corresponding to 	, the deformation
parameters do transform and a close look at (6.6) and (6.7) demonstrates that in the limit
p = q−1, we get back (6.6) from (6.7).

The sanctity and correctness of the relationship (6.4) can be checked by computing the
transformations generated by Qb and Qd . These transformations for the basic superoscillators
A, Ã, B, B̃, for the algebra (3.8) and (4.4) (i.e. for the case ν = 0, λ = pq), analogous to
(6.3), are

sbÃ = [Ã,Qb] = (1 − p2q)ÃAB̃ − pB̃

sdÃ = [Ã,Qd ] = (1 − q)ÃBÃ

sbA = [A,Qb] = (p − 1)AB̃A sdA = [A,Qd ] = qB + (pq2 − 1)BÃA

sbB̃ = {B̃,Qb} = 0 sdB = {B,Qd} = 0

sbB = {B,Qb} = A + (1 − q)BAB̃ + (pq − 1)AÃA

sdB̃ = {B̃,Qd} = p−1Ã + (1 − p−1)B̃BÃ + p−1(pq − 1)ÃAÃ.

(6.8)

The analogue of transformations (6.3) and (6.8) for the case of superalgebra (3.8) and (4.5)
that corresponds to ν = (pq)−1(1 − pq), λ = (pq)−1, is

sbÃ = [Ã,Qb] = (1 − q−1)ÃAB̃ − q−1B̃

sdÃ = [Ã,Qd ] = (1 − p−1)ÃBÃ

sbA = [A,Qb] = (q−1 − 1)AB̃A sdA = [A,Qd ] = p−1B + p−1(1 − p)BÃA

sbB̃ = {B̃,Qb} = 0 sdB̃ = {B̃,Qd} = p−1Ã + (1 − p−1)B̃BÃ

sdB = {B,Qd} = 0 sbB = {B,Qb} = A + (1 − q)BAB̃.

(6.9)

With the help of (6.5)–(6.7), it can be checked that the relationship (6.4) is satisfied for all
the transformations (6.3), (6.8) and (6.9). It is straightforward, in view of the relationship
δ = ± ∗ d ∗ between (co-)exterior derivatives of differential geometry, to claim that the
nilpotent transformations s̃d and s̃b are dual to each other. In other words, the discrete symmetry
transformations (5.1)–(5.3) for the covariant superalgebras (3.8), (4.4)–(4.6) corresponding to
the 	 operation (for the transformations connected with the q-superoscillators as well as the
deformation parameters) are the analogue of the Hodge duality ∗ operation of the differential
geometry.

This relationship can also be established at the level of the conserved (i.e. [H,Q] =
[H, Q̄] = 0) supercharges Q and Q̄ of the identification (4.7) that obey the algebra (4.8). For
instance, in the case of the unique superalgebra for pq = 1, we have the following relationship
between Q and Q̄ through S and S̄,

S̄
 = ± 	 S 	 
 S̄ = (−iq)−1/2Q̄ S = (−iq)1/2Q (6.10)

where the + sign on the rhs is for 
 = B, B̃ and the − sign on the rhs is for 
 = A, Ã.
Similar relations are valid for the cases of the covariant quantum superalgebras when pq �= 1
(i.e. (3.8) together with (4.4) and (4.5)). However, in those cases, the S and S̄ are defined as

S̄ = (+ip)+1/2Q̄ S = (−iq)+1/2Q. (6.11)

It will be noted that the conservation of supercharges Q, Q̄ can be recast in the language of
the BRST-type transformations sb and sd which turn out to be the symmetry transformations
for the Hamiltonian H as given below:

sbH = [H,Qb] = 0 sdH = [H,Qd ] = 0 {sb, sd}H = [H, {Qb,Qd}] = 0.

(6.12)
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This can also be re-expressed in the language of the de Rham cohomological operators because
H → � is the Casimir operator for the whole algebra as [H,Q] = [H, Q̄] = 0 → [H,Qb] =
[H,Qd ] = 0 → [�, d] = [�, δ] = 0. Hence in a single theoretical setting, we have obtained
a neat relationship among the BRST formalism, de Rham cohomological operators and the
covariant quantum superalgebras that are constructed by the bilinears of the noncommutative
q-superoscillators for the supersymmetric quantum group GLqp(1|1).

To wrap up this section, we comment on (i) the transformations generated by the operators
Y and H of the identification in (6.2), and (ii) the analogy between the variation of the degree
of a form due to the operation of the cohomological operators in differential geometry and
the changes of the ghost number of a state in the quantum Hilbert space (QHS) due to the
application of the conserved charges in the framework of the BRST formalism. Let us first
concentrate on (i). The corresponding transformations can be computed for all the algebraic
relations (3.8), (4.4), (4.5) and (4.6). For the sake of simplicity, however, let us focus only
on the simple case of (4.6) (i.e. the case for pq = 1). For this algebra, Y and H generate
transformations that are encoded in the following commutators:

[Ã, Y ] = −(1/1 + µ)Ã [A, Y ] = +(1/1 + µ)A

[B̃, Y ] = −(µ/1 + µ)B̃ [B, Y ] = +(µ/1 + µ)B

[Ã,H ] = −Ã [A,H ] = +A [B̃,H ] = −B̃ [B,H ] = +B.

(6.13)

On face value, both the above transformations look the same modulo some constant factors.
However, a close look at the identification (6.2) clarifies that there is a clear-cut distinction
between the two because of the presence of an i factor in the expression for Y = −iQg . In
fact, between the two transformations, one corresponds to a scale transformation and the other
corresponds to the gauge transformation. This is consistent with the ghost transformations
(generated by the conserved ghost charge) and the bosonic transformations (generated by
a bosonic charge that turns out to be the analogue of the Casimir operator) for a duality
invariant gauge theory described in the framework of the BRST formalism (see, e.g., [32–39]
for details). Now let us concentrate on (ii). The conserved charges Qb,Qd and H (which
have been realized in terms of the noncommutative q-superoscillators) can be elevated to the
operators in the QHS. Any arbitrary state |�〉n with ghost number n (i.e. iQg|�〉n = n|�〉n)
can be decomposed into a unique sum (in analogy with (2.2)) as

|�〉n = |ω〉n + Qb|χ〉(n−1) + Qd |θ〉(n+1) (6.14)

where |ω〉n is the harmonic state (i.e. Qb|ω〉n = Qd |ω〉n = 0) and the nilpotent operators Q(b)d

raise and lower the ghost number of states |χ〉(n−1) and |θ〉(n+1) by 1, respectively. In more
explicit and lucid language, it can be seen that for the above state |�〉n with ghost number n,
we have

iQgQb|�〉n = (n + 1)Qb|�〉n
iQgQd |�〉n = (n − 1)Qd |�〉n
iQgH |�〉n = (n)H |�〉n

(6.15)

which shows that the ghost numbers for the states Qb|�〉n,Qd |�〉n and H |�〉n (generated
by the conserved charges Qb,Qd and H) are (n + 1), (n − 1) and n, respectively. This also
establishes the correctness of the identification (6.2) of the bilinears of the q-superoscillators
with the conserved charges of the BRST formalism that, in turn, are connected with the de
Rham cohomological operators of differential geometry.
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7. Conclusions

The central result of our present paper is to provide a realization of the de Rham cohomological
operators of differential geometry, Hodge duality ∗ operation, Hodge decomposition
theorem, etc, in the language of (i) the noncommutative q-superoscillators, (ii) the covariant
quantum superalgebras of the bilinears in q-superoscillators, and (iii) the discrete symmetry
transformations on the q-superoscillators, etc, for a doubly deformed supersymmetric quantum
group GLqp(1|1). An interesting observation in our present investigation is the fact that
a unique covariant supersymmetric quantum algebra emerges from a couple of consistent
GLqp(1|1) covariant superalgebras for the condition pq = 1 on the deformation parameters.
Furthermore, the bilinears constructed from the noncommutative q-superoscillators provide
(i) a realization of the N = 2 supersymmetric quantum mechanical algebra, and (ii) a
realization of an extended BRST algebra where there is one-to-one mapping between a
set of conserved charges (Qb,Qd,W,−iQg) of the BRST formalism and the conserved
supercharges (Q, Q̄), the Hamiltonian (H) and the Witten index Y (that constitute a set
(Q, Q̄,H, Y )) of the N = 2 supersymmetric quantum mechanics, respectively. These charges,
in turn, are connected with the de Rham cohomological operators of the differential geometry.
Thus, our present investigation sheds light on the inter-connections among the de Rham
cohomological operators of differential geometry, an extended BRST algebra (constituted by
several conserved charges) for a class of duality invariant gauge theories and the N = 2
supersymmetric quantum mechanical algebra. All the above conserved charges and other
operators are expressed in the language of noncommutative q-superoscillators of a doubly
deformed supersymmetric quantum group GLqp(1|1) in their various guises.

It is worth emphasizing that the Hodge duality ∗ operation of the differential geometry
appears in our discussion as a set of discrete symmetry transformations under which a set of
GLqp(1|1) covariant superalgebras remains form invariant. This analogy and identification
have been established at two different and distinct levels of our discussion. First, it turns out
that the nilpotent (i.e. Q2 = Q̄2 = 0) and conserved (Q̇ = [Q,H ] = 0, ˙̄Q = [Q̄,H ] = 0)

supercharges Q and Q̄ (modulo some constant factors) are connected (cf (6.10)) with each other
in exactly the same manner as the (co-)exterior derivatives (δ) d are related (i.e. δ = ± ∗ d ∗)
to each other. Second, it is evident that the BRST-type transformations sd and sb, generated by
Qd ≡ Q̄ and Qb ≡ Q, are related (cf (6.4)), modulo some constant factors, in exactly the same
way as the relationship (i.e. δ = ±∗ d ∗) between (co-)exterior derivatives (δ) d of differential
geometry defined on a manifold without a boundary. At both levels of identifications, the 	

operation turns out to be equivalent to a set of discrete symmetry transformations (5.1)–(5.3),
under which a set of covariant quantum superalgebras (cf (3.8), (4.4)–(4.6)) remains form
invariant. The insight into such an identification comes basically from our experience with
the duality invariant gauge theories (that present a set of tractable field theoretical models for
the Hodge theory [32–39]) where the discrete symmetry transformations, for the (co-)BRST
invariant Lagrangian densities, turn out to be the analogue of the Hodge duality ∗ operation
of differential geometry.

It is very much essential for our present algebraic discussions to, ultimately, percolate
down to the level of physical applications to some interesting dynamical systems. In this
context, it is interesting to pinpoint that, in the language of differential geometry developed
on the superquantum hyperplane (see, e.g., [41–43] and references therein for details), the
noncommutative q-(super)oscillators can be identified with the Grassmannian as well as
ordinary coordinates and the corresponding derivatives. For instance, the set of bosonic
oscillators (A, Ã) can be identified with an ordinary coordinate x and the corresponding
derivative ∂/∂x, respectively. Similarly, the set of fermionic oscillators (B, B̃) can be identified
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with the Grassmannian coordinate θ and its corresponding derivative (∂/∂θ), respectively,
where θ2 = 0 and (∂/∂θ)2 = 0. These identifications, in turn, allow us to get a differential
calculus on the superquantum hyperplane from the covariant quantum algebra (3.8), (4.4)–
(4.6) obeyed by the noncommutative q-(super)oscillators. The ensuing GLqp(1|1) covariant
calculus will enable us to discuss physical systems on the superquantum hyperplane with
deformation parameters p and q.

It is interesting to point out that a consistent formulation of the dynamics on a
noncommutative phase space has been developed where the ordinary Lorentz (rotational)
invariance and the noncommutative quantum group invariance are maintained together for the
quantum group GLqp(2) with deformation parameters obeying pq = 1 [22, 23]. Some of
these ingredients have also been exploited in the context of discussion of the Landau problem
in two dimensions where Snyder’s idea of noncommutativity (reflected due to the presence of a
perpendicular constant magnetic field for a 2D electron system) and the noncommutativity due
to quantum groups GLqp(2) with pq = 1 are present together [23]. The algebraic relations
in the present paper and corresponding differential calculus might turn out to be useful in
the discussion of a spinning relativistic particle on a deformed superhyperplane. In fact, this
system has been discussed earlier [20] where only the on-shell conditions (i.e. the equations of
motion) have been exploited to obtain the NC relations6 among the phase variables which play
a crucial role in the description of the dynamics on the noncommutative (q-deformed) phase
space. However, a systematic and consistent differential calculus has not been developed in
[20] on the super quantum hyperplane for such a discussion. We very strongly believe that
our present work will bolster up the derivation of such a calculus on the super hyperplane.
Similarly, some supersymmetric field theoretic models can also be discussed in a systematic
manner by exploiting the differential calculus derived from the q-superoscillator algebra of
our present paper. These are the key issues that are under investigation and our results will be
reported elsewhere.
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Appendix

To establish the uniqueness of the algebras in (3.8), (4.4)–(4.6), we show that, given a trilinear
combination of the (super)oscillators, we can arrange all the tilde oscillators to the left in
two different ways due to the requirement of the associativity condition. In the following,
the pair of (super)oscillators that are exchanged first, due to the covariant algebras given in
section 3, are kept within the round brackets (cf lhs of (A.1), (A.2), etc, below). It will be

6 We have assumed the relations xµxν = xνxµ, pµpν = pνpµ, xµpν = qpνxµ, ψµψν + ψνψµ = 0 in the phase
space for the spinning relativistic particle where xµ and pµ are the target space (canonically conjugate) coordinates
and momenta, respectively, and the fermionic Lorentz vector ψµ stands for the ‘spin’ degrees of freedom attached to
the relativistic particle. In the above relations, the Lorentz invariance is respected for any arbitrary ordering of µ and
ν. One of the highlights of this work is the GL√

q (1|1) and GLq(2) invariance of the solutions for the equations of
motion at any arbitrary value of the parameter (i.e. time) of the evolution. The equations of motion are derived from
the Euler–Lagrange equations.
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noted that, on the rhs, there is no such reordering because the trilinears on the rhs are unique
in the sense that all the tilde oscillators have been brought to the left due to the algebras
of section 3 for comparison. In fact, it is the comparison on the rhs of the reordering7 that
determines the exact values for the parameters λ and ν. To corroborate the above assertion,
we take here a set of four trilinears of the (super)oscillators and show that the requirement of
the associativity condition yields the same values for λ and ν for all members of this set. In
fact, the rearrangements of the four members of the trilinears of the (super)oscillators,

A(ÃB̃) =
[(

λ − ν

pq

)]
B̃ +

[(
λ(λ − ν)

pq

)]
B̃ÃA

(AÃ)B̃ = [(1 + ν)] B̃ +

[
λ(λ − ν)

pq
+ ν

(
λ − λ − ν

pq

)]
B̃ÃA

(A.1)

B(ÃB̃) =
[

1

p

(
1 + λ − λ − ν

pq

)]
Ã +

[
λ

p

(
λ − λ − ν

pq

)]
ÃÃA

+

[
λ

p

(
λ − λ − ν

pq

)]
ÃB̃B

(BÃ)B̃ =
[(

λ − ν

p

)]
Ã +

[(
λ − ν

p

) (
λ − λ − ν

pq

)]
ÃÃA

+

[(
λ − ν

p

) (
ν − λ − ν

pq

)]
ÃB̃B

(A.2)

A(BB̃) =
[

1 +

(
λ − λ − ν

pq

)]
A +

[
λ

(
λ − λ − ν

pq

)]
ÃAA

+

[
ν

(
λ − λ − ν

pq

)
+ (λ − ν)

(
ν − λ − ν

pq

)]
B̃BA (A.3)

(AB)B̃ = [(λ − ν)] A +

[
(λ − ν)

(
λ − λ − ν

pq

)]
ÃAA +

[
(λ − ν)

(
ν − λ − ν

pq

)]
B̃BA

B(AÃ) = [(1 + ν)] B +

[
λ(λ − ν)

pq
+ ν

(
λ − λ − ν

pq

)]
ÃAB

(BA)Ã =
[(

λ − ν

pq

)]
B +

[(
λ(λ − ν)

pq

)]
ÃAB

(A.4)

lead to a unique set of relations between λ and ν

λ = pq + (pq + 1)ν ν

(
λ − λ − ν

pq

)
= 0 (A.5)

when the rhs of the above equations (i.e. (A.1)–(A.4)) are matched with each other. It is
straightforward to check that the above relations lead to the set of values of λ and ν as quoted
in (4.3). This discussion demonstrates the uniqueness of the algebras (3.8), (4.4) and (4.5).
Of course, the algebra (4.6) is a special case of the above algebras when pq = 1.
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